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Abstract—The failures of software service directly affect user
experiences and service revenue. Thus operators monitor both
service-level KPIs (e.g., response time) and machine-level KPIs
(e.g., CPU usage) on each machine underlying the service.
When a service fails, the operators must localize the root cause
machines, and mitigate the failure as quickly as possible. Existing
approaches have limited application due to the difficulty to obtain
the required additional measurement data. As a result, failure
localization is largely manual and very time-consuming.

This paper presents FluxRank, a widely-deployable framework
that can automatically and accurately localize the root cause
machines, so that some actions can be triggered to mitigate the
service failure. Our evaluation using historical cases from five
real services (with tens of thousands of machines) of a top search
company shows that the root cause machines are ranked top 1
(top 3) for 55 (66) cases out of 70 cases. Comparing to existing
approaches, FluxRank cuts the localization time by more than
80% on average. FluxRank has been deployed online at one
Internet service and six banking services for three months, and
correctly localized the root cause machines as the top 1 for 55
cases out of 59 cases.

Index Terms—KPI, failure mitigation, recommendation

I. INTRODUCTION

The failures of a software service directly affect user ex-
periences and service revenue [1–3]. Thus service operators
monitor both service-level KPIs (Key Performance Indicators)
(e.g., response time) and machine-level KPIs (e.g., CPU usage)
on each machine (e.g., servers or virtual machines) underlying
the service [4, 5]. When some service KPIs become anoma-
lous, indicating a service failure, the operators must mitigate
the failure as quickly as possible.

In practice, the process of troubleshooting commonly con-
sists of three steps: failure confirmation, mitigation and root
cause analysis. As shown in Fig. 1, when a critical KPI (e.g.,
response time) of a software service is anomalous, on-call
operators first take a few minutes to confirm if the service
really has a failure. If the failure is confirmed, then operators
must immediately take some actions (e.g., switch traffic away
from the faulty machines or restarting the faulty machines) to
put the service back to normal as soon as possible, without
pinpointing the exact root cause (e.g., the exact reason why
the machines are faulty). The mitigation time must be as short
in order to prevent larger loss. After a successful mitigation,
developers have enough time to find and fix the exact root
cause (e.g., bugs in the code, configuration or design).

It is important to highlight that a mitigation process is
different from a root cause analysis process. A large software
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Fig. 1: The process of troubleshooting. When a critical KPI
(e.g., response time) of a software service is anomalous, on-
call operators first take a few minutes to confirm if the service
actually has a failure. If the failure is confirmed, then operators
must immediately take mitigation actions to return the service
to normal. After a successful mitigation, developers have
enough time to localize the root cause by analyzing the source
codes, logs, configurations, etc..

service is typically a complex distributed system, consisting
of many (e.g., 10∼100) modules (e.g. web server module,
database module, computation module, etc.). Each module
could be deployed on many (e.g. hundreds of) machines in
multiple data centers, and each machine can have more than
100 machine-level KPIs. Thus, it is both challenging and often
unnecessary for operators to quickly pinpoint the exact root
cause before the mitigation, for the following two reasons.
On one hand, at the time of mitigation, operators typically
do not have the necessary details for the root cause (design,
codes, application logs etc.) of the service. On the other
hand, localizing the faulty machines, indicated by changes of
machine-level KPIs, is often sufficient to mitigate the failure
in modern service architecture (e.g. microservice) using tools
such as Kubernetes [6] and Mesos [7].

A. Limitations of Existing Approaches

In this paper, we focus on localizing the root causes to the
extent (e.g. faulty machines) where mitigation can be done
(e.g. rebooting) as opposed to analyzing the exact root cause.
There are many previous works on root cause localization.
Most of these works [8–18] localize root cause by constructing
dependency graphs. some works [13–18] focus on localizing
root cause in computer networks, and the dependencies are
inferred from the links in the network topology. However, a
software service’s dependency graph cannot be inferred by
this way. Sherlock [8] needs to deploy an agent on each host
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Fig. 2: Overview of FluxRank
to infer the dependency graph, then localizes the root cause
by analyzing correlations across logs from the same clients
and across different clients. MonitorRank [9] uses the trace
logs to construct the dependency graph, and then localizes the
root cause by a random walk algorithm. CauseInfer [10] uses
wire-captured service calls to construct the service dependency
graph and applies the PC-algorithm [19] to construct a metric
causality graph, then localizes the root cause across the two
level graphs. FChain [11] constructs the dependency graph by
Sherlock [8]’s algorithm. BRCA [12] mines the dependency
graph based on service’s historical KPI anomaly alerts.

The dependency graphs required by these approaches are
often very challenging to obtain in practice due to the difficulty
to collect the additional necessary data mentioned above.
Furthermore, it is also very challenging to maintain the graphs
for the rapidly changing software services, especially those
developed under the philosophy of Agile and DevOps. The
quick change of the codes makes the dependency graph
elusive. As a result, the application of the above approaches
faces a lot of limitations, and the root cause localization in
practice is still mainly manual and time-consuming.
B. Intuitions and Core Ideas

Solving real world troubleshooting problems using machine
learning is promising (a lot of monitoring data). However,
directly training machine learning models using monitoring
data in an end-to-end manner does not work due to: 1) not well
defined problems, 2) incomplete information, 3) insufficient
failure cases, and 4) the lack of interpretability. Our core high-
level idea is to utilize domain knowledge (which is often not
captured or learnable in the data, but abstractable or mimicable
from manual troubleshooting process) to design a system
architecture in which each component has a well defined
problem, sufficient data, and an interpretable algorithm. This
way, a seemingly unsolvable end-to-end machine learning
problem in troubleshooting becomes solvable with a domain
knowledge inspired architecture.

Therefore, our idea is inspired by the current manual
five-step failure mitigation method developed over the years
by a top global search engine service provider S (that we
work with). 1) In the background, operators use some online
statistical algorithms (e.g., static threshold) [20–22]) to detect
anomalies on large number of service and machine KPIs. 2)
After a service fails, operators manually scan through machine
KPIs to find the set of KPIs and faulty machines which
become anomalous around the service failure time. 3) Then
operators manually rank the potential combinations of faulty
machines according to operators’ experience. 4) To mitigate
the failure, operators manually trigger automatic action on the
highest-ranked machine combinations one by one (e.g., switch

traffic away from the fault machines or restarting the faulty
machines). 5) After a successful mitigation, the development
engineers (not the operators) will take time to analyze the
codes and logs to find and fix the exact root cause (e.g.. bugs
in code, configuration.)

In the above approach, simply localizing the root cause
machines and getting rid of them from the service can already
mitigate the service failure, since there are typically many
other working machines whose functions are identical to
those of the faulty machines, taking advantage of the high-
availability architecture prevalent in software services.

However, in the above approach, the first step is inefficient
and inaccurate (see more details in Challenge 1 below), and the
second and third steps are manual, thus the failure mitigation
still take too long in S. We analyzed 8 recorded failure cases
in a software service (with 29 modules running on 11,519
machines) during a 9-month period in S. The maximum
mitigation time is 175 minutes and the mean is 59 minutes.

Inspired by above practical approach and realizing its in-
efficiency, this paper proposes a widely-deployable system
called FluxRank that can automatically localize the root
cause machines underlying a given software service failure.
FluxRank uses the same measurement data, i.e. machine KPIs,
readily available in almost all software services, and mimics
the first three steps of the above approach, but makes each step
efficient, accurate, and automatic so that the overall mitigation
time can be greatly reduced.

Fig. 2 shows the overview of FluxRank. FluxRank is
triggered by the service failure (i.e., service KPI becomes
anomalous. Anomaly detection of service KPI [20–29] is not
part of FluxRank). The input of FluxRank includes: service
failure time and all machine KPI data. It has three phases
(see the bold arrows in Fig. 2): change quantification, digest
distillation and digest ranking. First, the changes of all ma-
chine KPIs are quantified in the change quantification phase.
Second, all KPIs are organized into digests by a clustering
algorithm in the digest distillation phase. Each digest contains
a set of machines that are from the same module and a set
of KPIs that represent the anomalous pattern of the module.
Third, all digests are automatically ranked by their potential
as the root cause location in the digest ranking phase. Finally,
based on the digest ranking results, operators mitigate the loss
by triggering some automatic actions. Change quantification
mimics step 2 in the manual mitigation process, while digest
distillation and digest ranking mimics step 3.

C. Challenges and Contributions

Below we summarize the challenges faced by FluxRank
and this papers’ contributions.

2

陈宇通

陈宇通



Challenge 1: How to quickly quantify the changes of
massive number of diverse KPIs around the service failure
time? Although many anomaly detection algorithms [20–27]
have been proposed over the years, each monitored KPI needs
its own algorithm and parameters. Given the large number
(e.g., millions) of diverse KPIs, careful algorithm selection and
parameter tuning for each KPI becomes infeasible, resulting
in inaccurate anomaly detection results and more difficulties
in steps 2 and 3. However, different from a general anomaly
detection scenario where the anomaly can happen at any time,
in our scenario the service failure time is already given and
we just need to develop an algorithm that can quantify the
changes of machine KPIs around the service failure time. The
remaining challenge is that the algorithm must be flexible to
work on diverse KPIs, and be lightweight and fast enough so
that it can quickly analyze the massive number of KPIs.

Challenge 2: How to cluster KPIs with physical sig-
nificance? A failure in one module can propagate to other
modules, and a faulty machine might have multiple KPIs
anomalous at the same time. As a result, one service failure
often coincides in time with many machine KPI anomalies.
Operators often summarize the machine KPI anomalies ac-
cording to their domain knowledge in an ad hoc manner.
Our challenge is to automatically and systematically cluster
the KPIs with similar anomaly degrees at the related ma-
chines/modules in a way that is intuitive to the operators to
determine the mitigation actions.

Challenge 3: How to rank the clustering results? For a
large software service, it is often the case that there are often
concurrent but unrelated anomalies at the machine level. This
means that, for a service failure, above phase 2 might output
multiple clustering results. Therefore, in phase 3 we have to
rank the clustering results from phase 2 such that the ones
which are most relevant to the failure should appear at the
top. However, ranking clusters (different KPIs with different
anomaly degrees at different machines) have not been studied
before, and there are no known metrics or ranking algorithm
that can directly deal with such clustering results.

This paper’s contributions can be summarized as follows:
Contribution 1. We propose a non-parametric lightweight

algorithm based on Kernel Density Estimation for quantifying
and comparing the changes of large number of diverse KPIs
around a specific time, addressing challenge 1.

Contribution 2. To address challenge 2, we propose a
vector representation of the changes, a distance function, and a
DBSCAN-based clustering algorithm that organizes the KPIs
into digests to represent the anomaly patterns of the modules.

Contribution 3. To address challenge 3, we propose a fea-
ture vector and a logistic regression based ranking algorithm
that can rank the Root Cause Digest (RCD) at the top.

Contribution 4. Our experiments on 70 real offline failure
cases of five production services (with tens of thousands of
machines) in a top global software service provider show that
the RCDs can be ranked to top one for 55 cases, and to top
three for 64 cases. Compared to existing approach, FluxRank
reduces the localization time by more than 80% on average.

Contribution 5. FluxRank is a widely-deloyable frame-
work. We have successfully deployed FluxRank on one In-

ternet services (with hundreds of machines) and six banking
services (each with tens of machines). Over the course of three
months of online deployment, it successfully analyzed 59 real
cases, and the result shows the RCDs can be ranked to top
one for 55 cases.

The rest of the paper is organized as follows. The design of
FluxRank are presented in §II, §III, and §IV. §V introduces the
system implementation. §VI presents our offline evaluation,
and §VII presents operational experience in real deployment.
Related work and conclusion are given in §VIII and §IX.

II. CHANGE QUANTIFICATION

As aforementioned, in the phase of change quantification
we try to quantify the changes of machine KPIs which are
measured by change degrees. Change degrees can be used to
compare among different types of KPIs (e.g., CPU utilization,
memory utilization, I/O rate). In addition, the KPIs of root
cause machines will first change when a service failure hap-
pens, followed by the KPI changes of the machines that are
impacted by this failure. Therefore, the change start time (Tc)
is also helpful to localize root cause machines.

Clearly, the design goal of change quantification is to
rapidly and accurately identify the change start time and
determine the change degree around the time of service failure
for a large number of diverse KPIs. Recall that traditional
anomaly detection algorithms such as [20–23] cannot achieve
the above goal because they are labor-intensive in algorithm
selection and parameter tuning for a large number of diverse
KPIs. Consequently, we propose to use a two-step design in
change quantification: (1) apply absolute derivative to identify
change start time and (2) use Kernel Density Estimation
(KDE) to determine change degree.
A. Change Start Time

Finding the change start time (Tc) of a KPI can be converted
into a classic change point detection problem. Many previous
methods, including supervised learning [30–34] and unsuper-
vised learning [35–47], have been proposed to address this
problem. For a large distributed software service, hundreds of
thousands to millions of KPIs should be analyzed for a single
service failure. Hence supervised learning methods cannot be
used due to the infeasible labeling efforts. In addition, the
algorithm should rapidly identify Tc for mitigation, and thus
the above unsupervised learning methods which are inefficient
in computing cannot be applied in our scenario either.

As aforementioned, different from the general change point
detection problem where a change can happen at any time,
in our scenario the service failure time is given, and we just
need to develop an algorithm that can detect KPI changes
around the failure time. As shown in Fig. 1, the failure start
time Tf can be determined based on the service KPI, and the
mitigation start time Tm is when operators confirm the failure
and start mitigation. Due to the delay of failure propagation,
the KPIs of root cause machines can change before Tf . To
identify the change start time of KPIs, we set a look-back
window [Tf −w1, Tm], where w1 is time length before Tf . In
practice, w1 is a configurable parameter. On the one hand, if
w1 is set too large, FluxRank may falsely include some KPI
changes which are irrelative to the service failure. On the other
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Fig. 4: Change point detection results of CUSUM [35]
and Abs Dev for 91 manually labeled anomalous KPIs.
CUSUM max and Abs Dev max are denoted the two algo-
rithms that are applied the maximum output score.

hand, if w1 is set too small, FluxRank may miss some KPI
changes of root cause machines. After analyzing 82 failures
within one year in S, we get the delays between the change
start time of root cause machines’ KPIs and the start time of
failures as shown in Fig. 3, and find that 80% of the delays are
less than 9 minutes, and the maximum delay is 19 minutes.
Therefore, we empirically set w1 to 30 min during evaluation.

In practice, the number of KPI data points within the look-
back window can be small, because the monitoring interval
can be per minute (50% of cases in our scenario), and the
small number of data points cannot support the complex
change point detection algorithms. We thus focus on the
algorithms that involve only simple calculation. In this work,
we desing a simple yet effective change point detection algo-
rithm, Abs Dev, which applys the absolute derivative of KPI
data, to automatically, accurately and efficiently identify the
change start time. Abs Dev calculates the absolute derivative
value [48] of each KPI data point. We deem that the KPI data
point achieving the maximum output score (absolute derivative
value) of Abs Dev within the look-back window has the most
significant change, and it represents the change start time.
This way, the change start time is efficiently and accurately
identified without any manual parameter tuning.

CUSUM [35] is a simple common change detection al-
gorithm. To compare the performance of CUSUM [35] and
Abs Dev for change start time detection, we manually labeled
the change start times (T label

c ) of 91 anomalous KPIs which
contain all types of KPIs in our study. We use the distance
between Tc and T label

c to compare the performance of different
algorithms: distance = |Tc − T label

c |. Fig. 4 shows the
detection results of CUSUM [35] and Abs Dev. CUSUM max
and Abs Dev max are denoted the two algorithms that are
applied the maximum output score method. We can see
that the distances of Abs Dev max are much smaller than
CUSUM max. Further more, The distances of Abs Dev max
are close to 0, which means the detected change start times
of Abs Dev max are very close to the labeled correct change

Abs_Dev_max

CUSUM_max

Fig. 5: The top figure is an anomalous CPU IDLE KPI. The
first change (in [20, 40]) is normal, and the second change
(in [80, 100]) is anomalous. The bottom two figures are the
output scores of CUSUM [35] and Abs Dev when analyze
the anomalous CPU IDLE. CUSUM [35] has higher control
CUSUM H and lower control CUSUM L. CUSUM max
denotes the maximum value of all data in CUSUM H and
CUSUM L.

start times.
Specifically, Fig. 5 shows the two algorithms’ output scores

of an anomalous CPU IDLE KPI which is one of the 91
anomalous KPIs. The first change ( in [20, 40]) of CPU IDLE
is normal, and the second change (in [80, 100]) is anomalous.
Because derivative can directly reflect the change degree, we
can see that the largest score of Abs Dev corresponds to the
correct change start time of the CPU IDLE KPI. CUSUM [35]
can also detect the correct change start time if the proper
threshold can be chosen, but it is impossible to manually
choose the thresholds for tens of thousands of machine KPIs.
Thus we have to use CUSUM max. Due to the cumulative
sum, the score of CUSUM [35] will continue to increase if
there are small changes after the correct change start time, as
is the case in the bottom left of Fig. 5. So the largest score
of CUSUM [35] cannot correspond to the correct change start
time. Therefore, we choose Abs Dev to detect the change start
times of KPIs.

B. Change Degree

As described in §I, the first challenge of FluxRank is to
design a non-parametric lightweight algorithm for quantifying
and comparing the changes of large number of diverse KPIs.
Thus, we propose to use the observation probability of change
to represent the change degree, because the probability is natu-
rally quantitative and can be compared between different types
of KPIs. We cannot find other metrics to represent and quantify
KPI changes, which can satisfy the above requirements.

Specifically, the change start time Tc is already obtained
in §II-A, thus we collect data {xi} in the time interval
[Tc − w2, Tc), and data {xj} in the time interval [Tc, Tm]
(we will introduce the selection of w2 shortly). Obviously,
{xi} are the data before the change and {xj} are the data
after the change. Then, the mathematical representation of the
observation probability of a change is: P ({xj}|{xi}). This
formula denotes the probability of observing {xj} after change
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TABLE I: The 47 types of machine KPIs

Type (#number) KPI & Corresponding Kernel Function

CPU-Related (8) Beta: CPU IDLE; CPU HT IDLE. Poisson:CPU CONTEXT SWITCH. Gaussian:CPU INTERRUPT;
CPU SERVER LOADAVG 1; CPU SERVER LOADAVG 15; CPU SERVER LOADAVG 5; CPU WAIT IO.

Disk-Related (15)

Beta: DISK TOTAL USED PERCENT; FD USED PERCENT; DISK TOTAL INODE USED PERCENT. Poisson:
DISK FS ERROR; FD USED. Gaussian: DISK PAGE IN; DISK PAGE OUT; DISK TOTAL AVG WAIT;

DISK TOTAL IO UTIL; DISK TOTAL READ KB; DISK TOTAL READ REQ; DISK TOTAL READ AVG WAIT;
DISK TOTAL WRITE AVG WAIT; DISK TOTAL WRITE KB; DISK TOTAL WRITE REQ.

Memory-Related (6) Beta: MEM USED PERCENT; MEM USED ADD SHMEM PERCENT. Poisson: MEM BUFFERS; MEM CACHED;
MEM USED; MEM USED ADD SHMEM.

Network-Related (13)

Beta: NET MAX NIC INOUT PERCENT. Poisson: NET TCP IN ERRS; NET TCP RETRANS; NET TCP LOSS;
NET UP NIC NUMBER. Gaussian: NET TCP ACTIVE OPENS; NET TCP CURR ESTAB; NET TCP IN SEGS;

NET TCP OUT SEGS; NET TCP TIME WAIT; NET TOTAL IN BITPS; NET TOTAL OUT BITPS;
NET TOTAL SOCKETS USED.

OS kernel-Related (5) Poisson: SYS OOM; SYS PAGING PROCS; SYS RUNNING PROCS; SYS STOPPED PROCS; SYS ZOMBIE PROCS.

under the premise of observing {xi} before change. This
probability indicates the degree of the change: the smaller the
probability, the larger the change degree.

To calculate the probability of P ({xj}|{xi}), we first cal-
culate the probability of each data point in {xj}: P (xj |{xi}).
Suppose that {xi} is generated by a random variable X , thus
the probability distribution of X can be estimated by {xi}. To
differentiate the upward changes and downward changes, we
compute the overflow probability P (X ≥ xj |{xi}) and the
underflow probability P (X ≤ xj |{xi}). We assume {xj} are
independent identically distributed (i.i.d.) samples, then we can
derive the overflow probability Po({xj}|{xi}) and underflow
probability Pu({xj}|{xi}) of {xj} as:

Po({xj}|{xi}) =
l∏

j=1

P (X ≥ xj |{xi})

Pu({xj}|{xi}) =
l∏

j=1

P (X ≤ xj |{xi})

where l is the number of data points in {xj}. Apparently, a
very small Po({xj}|{xi}) represents a upward change, and a
very small Pu({xj}|{xi}) denotes a downward change.

The number of samples in {xj} depends on not only
the length of (Tm − Tc], but also the collection interval of
KPI data. If two KPIs have different collection intervals,
Po({xj}|{xi}) and Pu({xj}|{xi}) will be very different,
because both Po({xj}|{xi}) and Pu({xj}|{xi}) depend on
the number of data points in {xj}. In order to compare
KPI changes with different collection intervals, we use the
geometric mean directly, and convert the negative value to
the positive value. Thus the scores of upward change o and
downward change u would be:

o = −1

l

l∑
j=1

logP (X ≥ xj |{xi})

u = −1

l

l∑
j=1

logP (X ≤ xj |{xi})

Then, the remaining question is how to estimate the proba-
bility distribution of X given {xi}. A common solution is to
assume that X follows Gaussian distribution and estimate the
probability distribution by sample mean and sample variance.
However, many KPIs do not follow Gaussian distribution. For
example, the KPI CPU IDLE, which represents the percentage
of CPU idle time, ranges from 0 to 1. It does not follow
Gaussian distribution. So we adopt Kernel Density Estimation

(KDE) [49], which can estimate proper probability distribu-
tions for different types of KPIs. KDE [49] is a non-parametric
approach to estimate the probability density function (PDF) of
a random variable based on observation samples.

f̂(x) =
1

n

n∑
i=1

K(x;xi)

where K is a kernel function which is determined by the
physical meaning of {xi}, and n is the size of {xi}.

In the above framework, {xi} are used to estimate the
probability distribution for random variable X . In order to
obtain a precise model, w2 should be large to more samples in
{xi}. However, many KPIs have periodic fluctuations, and the
probability distribution of X can change over time. Therefore,
a too large w2 will lead to inaccurate model, and we set
w2 = 1h based on empirical experience.

After analyzing the physical meaning of 47 machine KPIs in
our study, we find that three types of distributions can cover
all the 47 KPIs: Beta distribution, Poisson distribution and
Gaussian distribution, as shown in Table I. The same KPI’s
kernel function only needs to be selected once. Further, esti-
mating distributions based on KPIs’ physical meaning is more
precise and stable than other sampling based methods which
depend on the quality of the samples. The three distributions
are discussed as follows.

Beta Distribution: it is the dual distribution of Binomial
distribution. Binomial distribution describes the distribution of
number of successes in a trial containing multiple Bernoulli
tests, given that each Bernoulli test would result in a success
with probability p. Beta distribution describes the probability
distribution of p, given the number of tests and the number of
successes. Therefore, it is suitable for the random behavior of
percentages and proportions (e.g., CPU IDLE). For x ∈ [0, 1],
the PDF of Beta distribution is:

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)

where B is Beta function, and α and β can be estimated
by the method of moments [50], which is a commonly used
estimation method for Beta distribution.

Poisson Distribution: it describes the number of times a
random event occurs in a time interval or in a space. For
example, SYS OOM, which denotes the frequency of out of
memory (OOM), follows Poisson distribution. The PDF of
Poisson distribution is:

f(x;λ) =
λxe−λ

x!
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where λ is the expected number of events per interval, which
can be set to xi.

Gaussian Distribution: it is the default kernel function of
KDE [49]. The KPIs will be modeled by Gaussian distribution
if they cannot be modeled by the above two distributions. The
details of Gaussian kernel function can be found in [49].

Finally, for each KPI, the change quantification algorithm
outputs three values: upward change degree o, downward
change degree u, and change start time Tc. o and u will be used
for digest distillation, and Tc will be used for digest ranking.

III. DIGEST DISTILLATION

For a large software service deployed in multiple data
centers, it usually consists of 10∼100 modules, and has tens
of thousands of KPIs. Although the Change Quantification
algorithm can filter out a lot of normal KPIs, there are still
plenty of anomalous KPIs left. In one case of our experiment
(§VI), the number of anomalous KPIs is 10,653. Manually
Screening these KPIs one by one is still a daunting job for
operators. To localize faulty machines quickly, these KPIs
should be organized in a legible way. We propose to cluster
the KPIs into digests, which is a legible way for operators to
easily understand the status of the software service.

The basic idea of Digest Distillation is to cluster the
machines with similar KPI change patterns. The input is all
the quantified KPI changes in §II. First, the change degrees (o
and u) of each machine’s KPIs can form a vector to represent
the change pattern of the machine:

(o0, u0, ..., ok, uk)

where ok and uk are the change degrees of the KPI k. Second,
the machines are clustered into digests (clusters) based on
their vectors. We now introduce two key factors of clustering:
distance function and clustering algorithm.

A. Distance function

Distance function calculates the similarity between two
vectors. Our intuition is to group into a cluster the machines
whose KPIs change together. Although Euclidean distance is
a widely adopted distance function, it cannot capture “two
KPIs changing other” well. Euclidean distance measures the
absolute distance of two vectors. When two KPIs change
together, their Euclidean distance may be large for different
change degrees but their correlation is very strong. Therefore,
we adopt correlation as the distance function.

We compared three common correlation methods: Pearson
Correlation [51], Kendall’s tau [52], and Spearman Corre-
lation [53]. The result r of these three methods is a value
in [−1, 1], where 1 means a complete positive correlation, 0
means no correlation, and -1 means a complete negative corre-
lation. We use the following formula to transform correlation
r into distance: Distance = 1− r.

According to our experiment (§VI-C), Pearson Correla-
tion [51] performs the best. The reason is that Kendall’s
tau [52] and Spearman Correlation [53] are ranking-based
methods, thus little difference of the values will make the
ranking change greatly. Pearson Correlation [51] is not based
on the ranking, thus it is more suitable for our study.

B. Clustering Algorithm

Currently, four classic clustering algorithms are commonly
used: K-means [54], Gaussian mixture [55], hierarchical clus-
tering [55], and DBSCAN [56].

K-means [54] and Gaussian mixture [55] both require the
number of clusters as the input, which is not available in
our scenario. Hierarchical clustering [55] does not need the
cluster number, but it requires a distance function for two sub-
clusters. It is not easy to derive a correlation distance between
two clusters. Thus K-means [54], Gaussian mixture [55],
Hierarchical clustering [55] are not applicable in our scenario.
DBSCAN [56] only depends on the distance function without
the input of cluster number. It has two parameters: eps and
minPts. eps specifies the radius of a neighborhood, which
controls whether two items would have an edge in the neighbor
graph. minPts(minPts ≥ 2) specifies the minimum points
within distance eps of core point. As suggested in [56, 57], we
can fix minPts by domain knowledge and use the k-dist method
to determine eps. However, minPts is hard to determine in
practice. So we fix minPts to the minimum value 2.

Additional constraint: In theory, machines from different
modules can be clustered together. Some of these clusters can
be intuitively explained, such as data center level network
outage, but most of them cannot be intuitively explained.
Therefore, we adopted a conservative approach that only
machines from the same module would be clustered.

After clustering, the machines are clustered into several
groups. Each group is called a digest, which consists of a
set of machines and a set of KPIs. “M1” and “M2” in Fig. 6
are two example digests.

IV. DIGEST RANKING

As shown in Fig. 2, the last phase is to rank digests output
by phase 2 (§III). The distilled digests need to be ranked in
order to quickly localize the root cause machines. We propose
a ranking algorithm to rank the digests so that the one most
relevant to the root cause can be listed at the top. Here we
adopt Learning-to-rank [58]’s pointwise approach to train a
classifier using logistic regression [59]. Learning-to-rank [58]
is the application of machine learning in the construction of
ranking models. Next we will introduce the features that are
used to train the Learning-to-rank model.

We observed that root cause machines have the following
characteristics:

Observation 1: The change start times of some KPIs of
root cause machines are earlier than Tf (see Fig. 1), which
means that these KPIs have changes before failure start time.
This is reasonable because it takes some times for the failure
of the root cause machines to affect the service’s critical KPI.

Observation 2: The change start times of some KPIs of
root cause machines are similar to each other, while the change
start times of the KPIs of other machines might not be similar
because it takes time for the failure to propagate from root
cause machines to other machines and modules and the time
taken might be affected by some random factors.

Observation 3: Some KPIs of root cause machines have
large change degrees.
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Module Machine Ratio KPI
Downward 
Change (o)

Upward 
Change (u)

M1

DC1_m1_1 ;
DC1_m1_2;
……
DC1_m1_27;

0.036
(27/750)

CPU_HT_IDLE 45.3 0.0

CPU_IDLE 34.6 0.0

CPU_SERVER_LOADAVG_1 0.1 28.3

CPU_SERVER_LOADAVG_5 0.1
25.5

CPU_SERVER_LOADAVG_15 0.2
24.3

NET_TCP_OUT_SEGS 0 22.5

NET_TCP_IN_SEGS 0 21.4

MEM_CACHED 6.5 1.8

… … …

M2

DC1_m2_1;
……
DC1_m2_31;
DC2_m2_1
……
DC2_m2_34;

0.21
(65/312)

MEM_BUFFERS 21.9 4.6

CPU_SERVER_LOADAVG_15 0.36 9.0

DISK_TOTAL_READ_REQ 0.45 8.6

… … …

… … … … … …

Fig. 6: The ranked digests output by FluxRank for a failure
that 27 machines’s CPU got overloaded. DC denotes the data
center. Each row represents a digest.

Observation 4: The ratio of the number of root cause
machines is related to the root cause, because more root cause
machines have larger effects.

Next, we will construct the features for each digest ac-
cording to above observations. Let us introduce the notations
firstly. d denotes a digest, and I denotes a machine. We use the
superscript to denote the KPI and use the subscript to denote
the machine. For example, okI denotes the upward change
degree of KPI k on machine I .

Choosing Candidate KPI Set. Motivated by Observation
1, for a digest d, we firstly choose KPIs which change before
failure start time Tf as the candidate KPI set, denoted by
candidate set. More specifically, all features of a digest d are
constructed from its candidate set. Tck{I} denotes the change
start times of KPI k from the machines {I} of digest d. We use
T̂c

k
to denote the mean of Tck{I}. For a KPI k, if T̂c

k
≤ Tf ,

then KPI k belongs to the digest’s candidate set.
Feature Extraction. Firstly, features are extracted from the

change start times of KPIs in candidate set. More specif-
ically, motivated by Observation 1, we use the maximum,
minimum, summation and mean to represent the distribution
of {T̂c

k
} of all KPIs’ in candidate set, denoted by max Tc,

min Tc, sum Tc, mean Tc.
Secondly, we calculate the standard deviation of Tc

k
{I},

denoted by ˆstd
k
. If ˆstd

k
is small, it means that KPI k of

all the machines in {I} have changes together in a short time.
Motivated by Observation 2, we use the maximum, minimum,
summation and mean to represent the distribution of { ˆstd

k
}

of all KPIs’ in candidate set, denoted by max std, min std,
sum std, mean std.

Thirdly, for each KPI k in candidate set, we calculate the
mean of ok{I}, denoted by ôk, and the mean of uk{I}, denoted
by ûk. ôk and ûk represent KPI k’s average change degree
of all machines {I}. Then we use the maximum value of
{ôk, ûk} to denote KPI k’s maximum change degree, denoted
by maxkd . Motivated by Observation 3, we use the maximum,
minimum, summation and mean to represent the distribution
of {maxkd} of all KPIs’ in candidate set, denoted by max d,
min d, sum d, mean d.

Web
Apache

Service name
Failure start time

Results operator

Controller
RestAPI

Spark

input

output

Database
OpenTSDB & Mongo

Data Collector
Kafka

FluxRank
Computation

Query KPI data
Service data

Write Data 

Task

Results

Fig. 7: The implementation of FluxRank

Finally, motivated by Observation 4, we calculate the ratio
of the machines in the digest d to the total number of machines
of the same module, denoted by ratio.

We use logistic regression to learn the best linear com-
bination of the features. All training digests are labeled by
the operators’ mitigation records, and the label details are
described in §VI-A.

The KPIs within a digest also need to be ranked so that
operators can directly localize the anomalous KPIs. For a
digest d, all KPIs within candidate set are ranked by their
maxkd in descending order, and they are ranked ahead of all
other KPIs. In other words, the top one KPI of a digest d is
the one with the largest change degree in d’s candidate set.

Fig. 6 shows the ranked digests for a real failure (see details
of the failures in §VI-G) that 27 machines got CPU overload
out of 11519 machines. We can see that the top 1 digest
contains the 27 root cause machines, and the top 5 KPIs are
CPU related KPIs. From FLuxRank’s recommended results,
Operators can easily understand that 27 machines of module
M1 from datacenter DC1 got CPU overload.

V. SYSTEM IMPLEMENTATION

Since a large software service has tens of thousands of KPIs,
FluxRank is implemented as a highly efficient distributed
system, as shown in Fig. 7. It basically has five components:
Web UI, Controller, FluxRank Computation, Database and
Data Collector.

Web UI displays the data of KPIs and service. When a
failure happens, the operator can input the service name and
the failure time in the Web UI to trigger FluxRank. Controller
is a key component to connect other components. Its basic
function is to read and write the database, trigger the task
of FluxRank and store the results to the database, which is
implemented with RestAPI [60]. FluxRank Computation im-
plements FluxRank’s change quantification, digest distillation
and digest ranking procedures with Spark [61]. After a task is
submitted, FluxRank can output the recommendation results
of faulty machines and related anomalous KPIs within one
minute. According to the results, operators could take some
actions (e.g. switch traffic, reboot) to mitigate the failure.
Database stores all the KPI data and service meta data
(including service, modules, machines, etc.). It is implemented
with OpenTSDB [62] and Mongo [63]. Data Collector is the
agent deployed at each machines to collect all the KPI data.
It use Kafka [64] to write real-time data to the database.

7

陈宇通



TABLE II: Failure cases from five real production systems

Service #Modules #Machines Description #Case
p1 29 11,519 an application system for desktop clients that handles billions of user requests per day 10
p2 17 2,147 an application system for mobile clients that handles billions of user requests per day 48
p3 91 5,747 a monitoring system A for the whole company 7
p4 85 3,872 a financial service system like paypal 1
p5 7 238 a monitoring system B for the whole company 4

VI. OFFLINE EVALUATION

In historical section, we present the details of our offline
evaluation. 70 real failure cases from five production software
services (with tens of thousands of machines) from company
S are used to evaluate FluxRank’s performance. In §VI-C, we
compare different distance functions of clustering algorithm.
Then we compare the localization performance of fluxRank
with a baseline algorithm in §VI-D. In §VI-E, we analyze the
search space reduction of localization. The localization time
of FluxRank and manual are compared in §VI-F. Finally, we
introduce some typical cases in §VI-G.
A. Dataset

Failure Cases: We collected 70 real cases from five dif-
ferent software services of S. The operators recorded the
mitigation details of these cases, including when the failure
started, what the root causes were, how the failure was
mitigated, and the timeline of the whole mitigation processes.
Table II summarizes these failure cases.

KPI Set: Since KPIs are the fundamental input of the failure
localization, KPIs should somehow reflect the root cause of
failures. To make our experiment general and easily under-
stood, here we use the standard machine KPIs of the Linux
system as the KPI set. Table I shows the 47 standard machine
KPIs of the Linux system for the evaluation, consisting of
states of CPU, memory, disk, network and OS kernel. The
value of the KPIs can be collected from the special files in
the /proc directory of Linux system.

Labels of Cases: The operators added two labels to each
failure case based on the recorded diagnosis details: root cause
machines (RCM) and relevant KPI (RK).

Root Cause Machines (RCM) refers to the machine where
the root cause took place. A failure may have multiple RCMs.

Relevant KPI (RK) is a KPI relevant to root cause. A failure
case usually has multiple RKs. For example, if a machine has
a sudden overload of computation tasks, multiple CPU-related
KPIs (e.g. CPU idle) will reflect sudden changes. Any of these
KPIs can help operators to recognize the CPU overload.
B. Evaluation Methodology

Root Cause Digest (RCD): RCD output by FluxRank is a
digest satisfying the following conditions: 1) All machines of
a digest are RCMs. 2) The top-five KPIs of a digest contain
one or more RK(s).

A failure case may have one or multiple RCDs. If the root
cause comes from a single module, the case usually has one
RCD. Some of the cases have multiple RCDs, in which the
clustering algorithm fails to cluster all RCMs together for
some single root cause module cases. If the root cause is the
failure of a datacenter, e.g. power outage, all modules deployed
in this datacenter will fail in such a case. Presenting any one
of the RCDs to the operators is helpful enough to localize

TABLE III: Statistical analysis of internal distance and
cross distance using Pearson [51], Kendall’s tau [52], Spear-
man [53], and Euclidean. The internal distance represents the
distance between RCMs, and the cross distance represents the
distance between RCMs and non-RCMs.

Internal Distance Cross Distance
mean std mean std

Pearson 0.193 0.093 1.005 0.154
Kendall’s tau 0.391 0.123 1.012 0.13

Spearman 0.357 0.125 1.012 0.14
Euclidean 34.3 19.0 86.3 25.8

the failure datacenter. Therefore, we consider the result of
FluxRank is successful if any of the RCDs is ranked to top.
For the 70 failures, FluxRank outputs 83,948 digests in phase
2 and 277 RCDs in phase 3.

C. Choosing the Distance Function

We use an experiment to compare four distance functions
(§III): Pearson correlation [51], Kendall’s tau [52], Spearman
correlation [53], and Euclidean distance.

We randomly sample 10 root cause modules from the 70
cases, and the root cause modules contain both RCMs and non-
root cause machines (non-RCMs). A good distance function
should produce small internal distance between two RCMs,
and it should produce large cross distance between a RCM and
a non-RCM. We do not put any restrictions to the distance
between two non-RCMs, because the non-RCMs can be in
different states and hence behave differently in their KPIs.

Table III shows the statistical analysis for the internal
distance and cross distance. We find that all four functions
produce larger values on cross distances than on internal
distances. So all of them are qualified. But we also observe
that Pearson correlation performs best in terms of relative
difference. The average cross distance of Pearson correlation
is 5 times of the internal distance. For the other three functions,
the ratio is around 2 to 3 times. Therefore, we believe Pearson
correlation is the best one, and apply it in our algorithm.

D. Baseline Comparison

We choose PAL [65] as our baseline. As discussed in §I,
there are many previous works on root cause localization, but
most of them rely on the dependency graphs. It is difficult to
construct the graphs for the online large distributed software
services. Therefore, we only choose PAL [65] as our baseline
which does not rely on the dependency graph.

PAL [65] localizes the root cause by sorting the start times
of KPIs’ anomalous changes. PAL [65] can localize root cause
at machine level and output a ranking result, but it does not
cluster the machines. So each result item is single machine.
During evaluation, for each case, if top k results of PAL [65]
contains one or more root cause machines, then we consider
it successfully localizes the root cause machine.
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TABLE IV: The performances of different models.

Model Recall@1 Recall@2 Recall@3
FluxRank(5-fold) 0.78(55/70) 0.89(62/70) 0.94(66/70)
FluxRank(3-fold) 0.78(55/70) 0.9(63/70) 0.94(66/70)
FluxRank(2-fold) 0.85(60/70) 0.89(62/70) 0.94(66/70)

PAL [65] 0.14(10/70) 0.21(15/70) 0.27(19/70)

As described in §IV, FluxRank applies logistic regres-
sion [59] to train a pointwise ranking model. To evaluate its
performance, we use Recall@K, which is a commonly used
metric of ranking. For FluxRank:

Recall@K =
# of cases whose top-k digests contain RCDs

# of all cases
, and the PAL [65] ’s Recall@K is :

Recall@K =
# of cases whose top-k machines contain RCMs

# of all cases
We apply n-fold cross-validation [66] on our dataset. We ap-

plied 2-fold, 3-fold, and 5-fold cross-validations for FluxRank.
Table IV shows the results. It is clear that the FluxRank
achieves much better performance. Its Recall@3 is 0.94,
meaning it ranks 66/70 RCDs cases into top 3. Furthermore,
the performance of FluxRank is stable among different folds of
cross validations. We can see that the performance of PAL [65]
is not good, the reasons are as follows. First, for a large-scale
distributed software service, the root cause of a failure is very
complex and the root cause machines are related to many
features. Simply sorting the start times of KPIs’ anomalous
changes cannot localize the root cause machines. Second,
different KPIs have different collection intervals, the smallest
interval can be ten second, and the greatest interval can be one
minute or even larger. Therefore, KPIs with different collection
intervals cannot be sorted.
E. Reducing Search Space of Localization

Anomalous machines are the machines which contain one or
more anomalous KPIs. Fig. 8 shows the number of anomalous
machines of the 70 cases. There are about 80% cases which
have more than 300 anomalous machines. Fig. 9 shows that
about 80% cases have more than 20% anomalous machines.
Compared with screening all the massive anomalous machines,
FluxRank can rank the root cause to top-k digests. So operators
only need to check top-k digests, which can significantly
reduce the operators workload.
F. Time Cost

The time cost of localization starts from the mitigation start
time Tm and ends when the root cause machines are localized.
FluxRank is triggered at Tm by operators. When operators
obtain FluxRank’s ranked digests, they will take few minutes
to confirm the results. Therefore, the time cost of localization
by FluxRank consist of two parts: running time of FluxRank
and manual confirmation time by operators.

We experimented with two servers, each server has 130G
memory and 256 cores. The running time of FluxRank is about
1 minute. We set the confirmation time to 5 minutes by oper-
ators experience, which is a relative large (thus conservative)
value. So the time cost of FluxRank is 6 minutes. because there
are only 33 out of 70 cases recorded the manually time cost,
we only compare these 33 cases’s time cost between manually
localization and FluxRank, as shown in Fig. 10. FluxRank
reduce the diagnosis time by more than 80% on average.
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Fig. 8: CDF of the number of anomalous machines of 70 cases
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Fig. 9: CDF of anomalous machines ratio of 70 cases
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Fig. 10: The time cost of manually localiztion and FluxRank
for 33 failure cases.

G. Case Study

Due to the limited space, we only introduce in Table II three
representative cases from the 70 failure causes, whose RCDs
are ranked as top one, top two and out of top three.

RCD ranked the first. This case is a CPU overload
failure. The service runs on 11,519 machines (p1 in Table
II). The root cause of this failure is a faulty configuration that
causes CPU overload on 27 machines. In this case, the testers
were doing some offline stress tests. Due to an operator’s
faulty configuration, the CPUs of some online machines were
overloaded. After a few minutes, on-call operators found that
the response time of the service is anomalous. Then, the
on-call operators tried to mitigate the failure according to
their experience. They spent about one hour, with no success.
Then, this failure was escalated, and the operators stopped all
stress tests that may influence online service. Eventually, they
successfully mitigated the failure, but spent about two hours in
total. When the operators discussed this failure later on, they
found that the Root Cause Machines are 27 machines whose
CPUs got overloaded. Fig. 6 shows the output of FluxRank
for this case, FluxRank successfully recommends the RCD at
top one. The recommended RCD contains the 27 anomalous
machines, and the top 5 anomalous KPIs are all CPU-related
KPIs, belonging to the first row in Table I.

RCD ranked second. This case is an insufficient resource
failure. The service, which is the major monitoring service of
S, runs on 5,747 machines (p3 in Table II). The root cause is
that module A has insufficient resource to handle the increased
traffic. Module B has strong dependencies on module A. So
when module A’s machines become anomalous, module B’s
machines also become anomalous. The features of module B’s
digest is very similar with module A’s digest. As FluxRank
does not explicitly analyze the dependencies between modules,
the digest of module B is ranked first, and that of module
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A (the RCD) is ranked second. This case is representative
of all cases whose RCDs are ranked as top 2 and top 3 by
FluxRank. We plan to investigate incorporating dependencies
into FluxRank in a widely-deployable way in the future.

RCD is not ranked into top three. This case is a memory
overload failure. The service, which is the major mobile
business service that handles billions of user requests per day,
runs on 2147 machines (p2 in Table II). The reason why the
RCD is not ranked into top three is that this service is deployed
on many VMs, and the resource KPIs of the VMs are not
monitored. Therefore, the sudden changes on resource KPIs
of these VMs cannot be clearly represented by the physical
machines’ resource KPIs they are on. The lesson we learned is
that the VM KPI should also be monitored, which can enable
FluxRank to successfully localize such failure in the future.
On the other hand, analyzing similar cases helps identify KPIs
that should have been monitored in a very targeted manner and
gradually helps improve the coverage the monitoring.

VII. ONLINE DEPLOYMENT

FluxRank has been successfully deployed online on one
Internet service (with hundreds of machines) in S and six
banking services (each with tens of machines) in two large
banks for three months. Table V shows the details of the 7 real
services and the online performance of FluxRank. A valid case
is one whose RCD is ranked first. We can see that FluxRank
ranked the RCDs to top-1 for 55 cases in the 59 online cases.
Because the RCDs of other 4 cases are not ranked into top 3,
so Table V only shows the top-1 results. Next we introduce
the details of some representative valid cases.

Valid Case 1: The root cause of this case (in the Internet
service) is that the number of database reading operations
of a database module increased. When operators found the
response time KPI of the service is anomalous, they used
FluxRank to localize the root cause machines. The top one
digest of the recommendation result contains 4 machines and
16 anomalous KPIs. Operators observed that these 4 machines
came from the database module, and the top five anomalous
KPIs are all related to the database reading operations. There-
fore, they quickly and successfully mitigated the failure by
switching from these 4 machines to backup database servers.

Valid Case 2: On Oct. 26, 2018, one banking service’s
number of failed transaction increased significantly, which is
a failure. The root cause is that someone started a process
occupying most of CPU and memory of the web-proxy ma-
chines. FluxRank quickly localized the root cause machines
within 3 mins. The top one digest of the recommended RCD
showed the web-proxy machines’s CPU and memory usage
became anomalous. So the operator stopped the process and
the banking service returned to normal.

There are 4 cases that FluxRank did not recommend the
RCDs at the top. The reasons are: 1) The root cause of
the failure, e.g., the business logic error, is not reflected in
the KPIs, This is the limitation of FluxRank, which only
utilizes monitored machine KPIs. We plan to improve on this
limitation in the future. 2) For the problems in data collection
system, there are many missing data in the KPIs. The lessons
are that the underlying monitoring system needs to be robust
in order for FluxRank to work reliably.

TABLE V: The details of 59 online cases from 7 real services.
The valid case represents the case whose RCD is ranked first.

#module #machine #KPI/machine (#valid case)
/ (#total case)

s1 15 520 591 2/2
s2 3 30 120 1/1
s3 4 40 302 3/3
s4 4 38 520 3/5
s5 3 35 424 1/1
s6 4 38 512 3/5
s7 7 26 311 42/42

VIII. RELATED WORK

For a large-scale distributed software service, diagnosing
failure is a challenging and classic research topic. §I has
overviewed the dependence-based failure diagnosis work, and
below we provide other representative related works.

Log-based troubleshooting: System log is an important
clue for diagnosis [67–70]. Works [71, 72] train the normal
pattern from history data and use these patterns to detect the
anomalies. For large-scale service, the volume of logs is huge.
Directly analyzing the log has a high overhead. FluxRank is
light-weight because it only focuses on the KPI data.

Trace-based troubleshooting: Pinpoint [73] and Dep-
per [74] collect the execution path information (traces). When
failure happens, traces are useful to localize the root cause.
But works [73, 74] need to modify the source code of service.
Generally, a large-scale service is developed by many teams
with different languages over the years, the overhead of
modifying source code is often too high. FluxRank can be
easily deployed without modifying any source code.

IX. CONCLUSION

This paper presents FluxRank, a widely-deployable frame-
work that can automatically and accurately localize the root
cause machines underlying software service failures, so that
some actions can be triggered to mitigate the service failure.
Our evaluation using historical cases from five real services
(with tens of thousands of machines) show that the true faulty
machines are ranked top 1 (top 3) for 55 (66) cases out
of 70 cases. Compared to existing approach FluxRank cuts
the localization time by more than 80% on average (to less
than 6 minutes). FluxRank has been successfully deployed
online on one Internet service (with hundreds of machines)
and six banking services (each with tens of machines) for
three months, and correctly localized the root cause machines
as the top 1 for 55 cases out of 59 cases.

In the future, we plan to extend the FluxRank’s framework
to include the text-based machine logs, also widely available
but more challenging to analyze, to provide more detailed
localization information within the identified faulty machines.

ACKNOWLEDGMENT

The authors gratefully acknowledge the contribution of
Juexing Liao and Fuying Wang for proofreading this pa-
per. This work has been supported by the Beijing National
Research Center for Information Science and Technology
(BNRist) key projects, the Fundamental Research Funds for
the Central Universities (Grant No. 63191427), and CERNET
Innovation Project (Grant No. NGII20180121).

10



REFERENCES

[1] L. Hook, “Amazon failure disrupts hundreds of thousands of websites.”
https://www.ft.com/content/b809c752-fded-11e6-96f8-3700c5664d30,
march 1, 2017.

[2] J. NOVET, “Microsoft confirms azure storage issues
around the world.” https://venturebeat.com/2017/03/15/
microsoft-confirms-azure-storage-issues-around-the-world, march
15, 2017.

[3] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, and Z. Zang, “Rapid
and robust impact assessment of software changes in large internet-based
services,” in Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies. ACM, 2015, p. 2.

[4] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, Z. Zang, X. Jing, and
M. Feng, “Funnel: Assessing software changes in web-based services,”
IEEE Transactions on Service Computing, 2016.

[5] Y. Sun, Y. Zhao, Y. Su, D. Liu, X. Nie, Y. Meng, S. Cheng, D. Pei,
S. Zhang, X. Qu et al., “Hotspot: Anomaly localization for additive
kpis with multi-dimensional attributes,” IEEE Access, vol. 6, pp. 10 909–
10 923, 2018.

[6] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, no. 3, pp. 81–84, 2014.

[7] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in NSDI, vol. 11, no. 2011, 2011,
pp. 22–22.

[8] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang, “Towards highly reliable enterprise network services via
inference of multi-level dependencies,” in ACM SIGCOMM Computer
Communication Review, vol. 37, no. 4. ACM, 2007, pp. 13–24.

[9] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a service-
oriented architecture,” in ACM SIGMETRICS Performance Evaluation
Review, vol. 41, no. 1. ACM, 2013, pp. 93–104.

[10] P. Chen, Y. Qi, P. Zheng, and D. Hou, “Causeinfer: automatic and
distributed performance diagnosis with hierarchical causality graph in
large distributed systems,” in INFOCOM, 2014 Proceedings IEEE.
IEEE, 2014, pp. 1887–1895.

[11] H. Nguyen, Z. Shen, Y. Tan, and X. Gu, “Fchain: Toward black-box
online fault localization for cloud systems,” in Distributed Computing
Systems (ICDCS), 2013 IEEE 33rd International Conference on. IEEE,
2013, pp. 21–30.

[12] X. Nie, Y. Zhao et al., “Mining causality graph for automatic web-based
service diagnosis,” in Performance Computing and Communications
Conference (IPCCC), 2016 IEEE 35th International. IEEE, 2016, pp.
1–8.

[13] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl,
“Detailed diagnosis in enterprise networks,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 4, pp. 243–254, 2009.

[14] T. Ahmed, B. Oreshkin, and M. Coates, “Machine learning approaches
to network anomaly detection,” in Proceedings of the 2nd USENIX Work-
shop on Tackling Computer Systems Problems with Machine Learning
Techniques. USENIX Association, 2007, pp. 1–6.

[15] Y. Liu, L. Zhang, and Y. Guan, “A distributed data streaming algorithm
for network-wide traffic anomaly detection,” ACM SIGMETRICS Per-
formance Evaluation Review, vol. 37, no. 2, pp. 81–82, 2009.

[16] R. Jiang, H. Fei, and J. Huan, “Anomaly localization for network data
streams with graph joint sparse pca,” in Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2011, pp. 886–894.

[17] J. Gao, G. Jiang, H. Chen, and J. Han, “Modeling probabilistic measure-
ment correlations for problem determination in large-scale distributed
systems,” in 2009 29th IEEE International Conference on Distributed
Computing Systems. IEEE, 2009, pp. 623–630.

[18] C. Wang, I. A. Rayan, G. Eisenhauer, K. Schwan, V. Talwar, M. Wolf,
and C. Huneycutt, “Vscope: middleware for troubleshooting time-
sensitive data center applications,” in ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open Distributed
Processing. Springer, 2012, pp. 121–141.

[19] M. Kalisch and P. Bühlmann, “Estimating high-dimensional directed
acyclic graphs with the pc-algorithm,” Journal of Machine Learning
Research, vol. 8, no. Mar, pp. 613–636, 2007.

[20] S.-B. Lee, D. Pei et al., “Threshold compression for 3g scalable
monitoring,” in INFOCOM, 2012 Proceedings IEEE. IEEE, 2012, pp.
1350–1358.

[21] A. H. Yaacob, I. K. Tan et al., “Arima based network anomaly detection,”
in Communication Software and Networks, 2010. ICCSN’10. Second
International Conference on. IEEE, 2010, pp. 205–209.

[22] H. Yan, A. Flavel et al., “Argus: End-to-end service anomaly detection
and localization from an isp’s point of view,” in INFOCOM, 2012
Proceedings IEEE. IEEE, 2012, pp. 2756–2760.

[23] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: methods, evaluation, and applications,” in Proceedings of the
3rd ACM SIGCOMM conference on Internet measurement. ACM, 2003,
pp. 234–247.

[24] F. Knorn and D. J. Leith, “Adaptive kalman filtering for anomaly
detection in software appliances,” in INFOCOM Workshops 2008, IEEE.
IEEE, 2008, pp. 1–6.

[25] A. Mahimkar, Z. Ge et al., “Rapid detection of maintenance induced
changes in service performance,” in Proceedings of the Seventh COn-
ference on emerging Networking EXperiments and Technologies. ACM,
2011, p. 13.

[26] D. Liu, Y. Zhao et al., “Opprentice: Towards practical and automatic
anomaly detection through machine learning,” in Proceedings of the
2015 ACM Conference on Internet Measurement Conference, ser. IMC
’15. New York, NY, USA: ACM, 2015, pp. 211–224.

[27] H. Xu, W. Chen et al., “Unsupervised anomaly detection via variational
auto-encoder for seasonal kpis in web applications,” in Proceedings of
the 2018 World Wide Web Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2018, pp. 187–196.

[28] J. Bu, Y. Liu, S. Zhang, W. Meng, Q. Liu, X. Zhu, and D. Pei, “Rapid
deployment of anomaly detection models for large number of emerging
kpi streams,” in 2018 IEEE 37th International Performance Computing
and Communications Conference (IPCCC). IEEE, 2018, pp. 1–8.

[29] M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai, “Robust and rapid
adaption for concept drift in software system anomaly detection,”
in 2018 IEEE 29th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2018, pp. 13–24.

[30] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivas-
tava, “Using mobile phones to determine transportation modes,” ACM
Transactions on Sensor Networks (TOSN), vol. 6, no. 2, p. 13, 2010.

[31] Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma, “Understanding
transportation modes based on gps data for web applications,” ACM
Transactions on the Web (TWEB), vol. 4, no. 1, p. 1, 2010.

[32] I. Cleland, M. Han, C. Nugent, H. Lee, S. McClean, S. Zhang, and
S. Lee, “Evaluation of prompted annotation of activity data recorded
from a smart phone,” Sensors, vol. 14, no. 9, pp. 15 861–15 879, 2014.

[33] M. Han, Y.-K. Lee, S. Lee et al., “Comprehensive context recognizer
based on multimodal sensors in a smartphone,” Sensors, vol. 12, no. 9,
pp. 12 588–12 605, 2012.

[34] K. D. Feuz, D. J. Cook, C. Rosasco, K. Robertson, and M. Schmitter-
Edgecombe, “Automated detection of activity transitions for prompting,”
IEEE transactions on human-machine systems, vol. 45, no. 5, pp. 575–
585, 2015.

[35] F. Gustafsson and F. Gustafsson, Adaptive filtering and change detection.
Citeseer, 2000, vol. 1.

[36] F. Desobry, M. Davy, and C. Doncarli, “An online kernel change
detection algorithm,” IEEE Transactions on Signal Processing, vol. 53,
no. 8, pp. 2961–2974, 2005.

[37] E. Keogh and J. Lin, “Clustering of time-series subsequences is mean-
ingless: implications for previous and future research,” Knowledge and
information systems, vol. 8, no. 2, pp. 154–177, 2005.
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